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Motivation & Research Question

Financial markets exhibit return predictability arising from:

Public signals (e.g., fundamentals, firm characteristics).
Latent demand shocks (e.g., investor sentiment, large trades).

Reinforcement learning (RL) traders do not assume a known
structure–they learn from experience.

Research Questions:

Can AI-driven investors detect and exploit return predictability?

How do they influence market efficiency, liquidity, and price formation?

Goal: Understand how AI strategies learn from and reshape asset prices.
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Algorithmic Behavioral Finance

Behavioral finance focuses on human biases.

As AI-based trading grows, the decision-makers are algorithms.

Goldstein, Spatt, and Ye (2021): “Just as insights into human behavior
from the psychology literature spawned the field of behavioral finance,
so can insights into algorithmic behavior (or the psychology of
machines) spawn an analogous blossoming of research in algorithmic
behavioral finance.”
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What We Do

Combine deep reinforcement learning (DRL) with a
demand-based asset pricing approach (Koijen and Yogo, 2019):

Prices reflect both fundamentals and latent demand from a
representative investor.
AI traders learn endogenously and have price impact.

Compare AI outcomes to a rational expectations (RE)
benchmark:

Do AI traders discover predictable signals?
Do AI traders internalize their price impact and that of competing AIs?
How does AI trading shape market efficiency and liquidity?

Gufler, Sangiorgi, Tarantino (Deep) Learning to Trade



Introduction Mkt Environment Empirical Design Experiments Conclusion Appendix References ReferencesMotivation What we do Preview Literature

Preview of Results

Qualitative Alignment with Rational Benchmark:
AI portfolios largely mirror the comparative statics from the RE case.
Agents learn to decode price information and internalize price impact.

Negative Learning Externality with Many AI Traders:
Quantitatively, AI traders deviate from RE as competition increases.
Multiple AIs generate additional noise, degrading each other’s learning.
Performance relative to RE also decreases with size (≈ decreasing
returns).

Market Efficiency and Liquidity:
AI trading increases market efficiency making returns less predictable.

But not as much as RE traders would.

AI traders provide less liquidity compared to RE traders.

AIs do not react to unexpected changes in the environment as RE would.
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Literature

Reinforcement Learning in Finance and Economics: Calvano et al.
(2020); Colliard et al. (2023); Abada and Lambin (2023); Johnson
et al. (2023); Dou et al. (2023); Yang (2024).

Our paper differs in (i) focus (predictability vs. coordination/collusion),
(ii) approach (embedding RL in empirically plausible settings), and (iii)
methods (Deep RL with continuous action spaces vs. tabular-Q
learning).

Behavioral Biases in Model-Free Algorithms: Barberis and Jin
(2023)

Demand-Based Asset Pricing: Koijen and Yogo (2019)
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Market Environment: Setup

Time: t = 0, 1, 2, . . .

N risky assets with supply Sn (exogenous) and price Pn,t (endogenous)

Risky assets pay dividends Dn,t ; we assume Dn,t/Pn,t−1 is exogenous.

A riskless asset with exogenous gross return Rf .

Two types of agents:

J Traders (j = 1, . . . , J), holding S j
n,t shares of asset n at time t.

Representative Investor (marginal investor, or “the market”), holding

the residual supply Sn −
∑J

j=1 S
j
n,t .
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Representative Investor’s Demand

Log-exponential form as in (Koijen and Yogo (2019)):

wn,t

w0,t + γt
= exp

(
β0(pn,t + sn) +

K−1∑
k=1

βk xk,n,t + βK + ϵn,t

)
.

wn,t ,w0,t : portfolio weights in risky vs. risk-free.

γt : fraction of assets consumed by the representative investor.

pn,t = log (Pn,t), sn = log (Sn).

xk,n,t : firm characteristics (e.g., book-to-market, profitability...).

ϵn,t : latent demand.

{β0, β1, · · · } shape the demand elasticity of the representative investor.
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Equilibrium Prices

Solve for {Pn,t} taking {S j
n,t} as given and addition assumptions.

We obtain the following equilibrium price

pn,t = −sn+
− ln

(
1− αS

n,t

)
+
∑K−1

k=1 βkxk,n,t + βK + ϵn,t + ln(DM,t) + ϕ

1− β0
.

αS
n,t =

∑J
j=1 S

j
n,t

Sn
: fraction of supply demanded by J traders.

DM,t =
∑N

n=1 SnDn,t : aggregate dividend (growing at rate g).
ϕ: constant capturing g ,Rf , λ (consumption rate).

Larger αS
n,t =⇒ higher pn,t ; price impact depends on β0.

β0 closer to 1 means demand is less elastic =⇒ stronger price impact.
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Learning & Return Predictability

Focus on one-period portfolio choice, thus αS
t+1 = 0 (exit in t+1).

In equilibrium, the (log) capital gain equals

pn,t+1−pn,t =
ln
(
1− αS

n,t

)
+
∑K−1

k=1 βk∆xk,n,t+1 +∆ϵn,t+1 + log(1 + g)

1− β0
.

Stock characteristics and latent demand follow an AR(1) process:

xk,n,t+1 = ck,n + ρk,nxk,n,t + ηk,n,t+1,

ϵn,t+1 = cϵ,n + ρϵ,nϵn,t + ξn,t+1.

Return predictability arises from mean reversion in {xk,n,t}, ϵn,t .
Stock characteristics are public information, the latent demand is not.
However...
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Decoding Prices

In RE models:

The equilibrium price is a function of public signals and latent demand:

pn,t = fn(public info, αS
n,t) +

ϵn,t
1− β0

RE agents know this function and the price formation process.

They can invert it to extract ϵn,t from pn,t .
⇒ In equilibrium, pn,t fully reveals the latent demand ϵn,t .

AI investors have no knowledge of the data generating process.

Can they learn it?
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Why AI Agents Can’t Use Price Directly

In Reinforcement Learning:

Agents must act based on an observed state at time t.

But the equilibrium price pn,t depends on agents’ actions.

Using pn,t as input creates circular logic.

Solution:

Replace pn,t with a “pre-trade price” p∗n,t , based only on public signals
and representative investor demand.

Exogenous to AI actions, but still reveals ϵn,t .

Allows AI to use it as part of their state avoiding circularity.
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One-Period RE Benchmark: Setup

RE benchmark: useful to evaluate the AIs’ portfolio policies, both
qualitatively and quantitatively.

J risk-neutral, rational, strategic speculators enter at t, exit at t + 1.

Trade in risky asset n and the riskless asset.

Initial wealth equal to a share ω of the mkt. cap. of asset n.

Each chooses portfolio share θjn,t ∈ [0, 1] in the risky asset.

Next period, θjn,t+1 = 0 (liquidation).
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One-Period RE Benchmark: Information

Define p∗n,t the pre-trade price

p∗n,t = −sn +
∑K−1

k=1 βkxk,n,t + βK + ϵn,t + ln(DM,t) + ϕ

1− β0
,

and define “adjusted market equity” as

me∗n,t = p∗n,t + sn −
log (DM,t)

1− β0
.

Before trading, speculators share the same information

It = {me∗n,t , {xn,k,t}K−1
k=1 }.

It fully reveals ϵn,t :

E (ϵn,t |It) = (1− β0)me∗n,t −

(
K−1∑
k=1

βkxk,n,t + βK + ϕ

)
= ϵn,t .
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One-Period RE Benchmark: Information (cont’d)

We define zn,t as

zn,t = γ0 +
K−1∑
k=1

γkxk,n,t + γKme∗n,t ,

for some coefficients γ0, . . . γK .

zn,t is a sufficient statistic for In,t with respect to Rn,t+1.

Rational traders should condition their portfolio choice on zn,t alone.
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REE: Portfolio Choice

A Rational Expectation Equilibrium (REE) is a set of portfolio shares {θjn,t}
that are individually optimal for each speculator given their information and
given the price formation process.

Proposition

An equilibrium exists, is unique, and is symmetric. In equilibrium:

(i) θ is depends only on the sufficient statistic zn,t (linear sufficiency), and
is increasing

(ii) θ is decreasing in ω (size effect).

(iii) Fixing ωJ, θ is increasing in J (competition effect).
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REE: Market Efficiency

With a representative investor, returns are predictable from public info.

Rational speculators trade on these signals, reducing predictability.

Market Efficiency:

Re
n,t+1 = gn(It) + en,t+1, ME =

Var(en,t+1)

Var(gn(It)) +Var(en,t+1)

ME closer to 1 → returns are unpredictable → greater efficiency.

Proposition

Market efficiencyME increases with speculator size ω and, for fixed total
size ωJ, with the number of speculators J, when ωJ is large enough.

The expected return function gn is computed inside the model.

Alternative: linear gn, i.e., a predictive regression “outside the model.”
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REE: Market Liquidity

Consider a temporary supply shock sn → sn + σ.

Without speculators, the price drops one-for-one: ∂pn,t/∂σ = −1.
Rational speculators anticipate mean reversion and buy, reducing the
price impact.

Liquidity:

L = 1 + E

(∣∣∣∣∂pn,t∂σ

∣∣∣∣
σ=0

)

Higher L more liquidity (smaller price response to shocks).

Proposition

Liquidity L increases with speculator size ω and, for fixed total size ωJ, with
the number of speculators J, when ωJ is large enough.
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Algorithmic Learning vs. Rational Benchmark

Rational: Perfectly extracts ϵn,t from prices, trades on mispricing
internalizing price impact.

AI (RL):
Learn from experience, without model knowledge.
Observe public signals but not the underlying structure.
May under- or overreact to price impact and predictability.

How close do AIs come to RE agents in:

Portfolio policies and realized returns?
Market outcomes: efficiency and liquidity?
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Demand Estimation: Koijen & Yogo (2019)

Objective: Estimate how investors’ portfolio weights respond to stock
characteristics and price, while allowing for a latent demand component.

Following Koijen and Yogo (2019), for investor i and quarter t:

wi ,n,t

wi ,0,t
= exp

(
βme
i ,t men,t + βbe

i ,t ben,t + · · ·+ βmkt
i ,t mktn,t + β0

i ,t + ϵi ,n,t

)
.

Characteristics: market equity, book equity, investment growth,
dividend/book, profitability, market beta.

ϵi ,n,t : investor-specific latent demand.

Data sources:

SEC 13F filings (investor holdings).
CRSP/Compustat for firm characteristics (1982:Q2 – 2021:Q4).
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Representative Investor Demand calibration

Aggregate investor-level demand coefficients into a representative
investor:

βk =
1

T

T∑
t=1

I∑
i=1

AUMi ,t∑I
i=1 AUMi ,t

βk
i ,t .

Similarly, we compute the representative investor’s latent demand as

ϵn,t =
I∑

i=1

AUMi ,t∑I
i=1 AUMi ,t

ϵi ,n,t .

.
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Simulation of Characteristics & Dividends

For each stock n, we fit AR(1) processes for characteristic
(ben, profn, invn, divn,mktn) and for the latent demand ϵn,t .

Dividends:

Sample dividend yield from data.
Dn,t+1 = (div. yield)× Pn,t .

Calibrate λ and g to match average observed returns.

Set Rf equal to the mean over the sample period.

Use estimated processes and parameters to simulate equilibrium prices.
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Deep Deterministic Policy Gradient (DDPG)

DDPG is a reinforcement learning algorithm for continuous action
spaces.

Standard Q-learning deals with discrete actions; DDPG uses:

Actor network: selects actions (portfolio weights).
Critic network: evaluates the quality of these actions.

The agent learns an optimal trading policy to maximize cumulative
rewards (portfolio returns).
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How DDPG Learns Over Time

Step-by-step:

1 Observe market state st (prices, characteristics, holdings).

2 Actor selects action at = µθµ(st) (portfolio weights).

3 Environment returns reward rt and next state st+1.

4 Critic updates value function:

y = rt + γ QθQ′
(
st+1, µθµ′ (st+1)

)
.

5 Actor improves its policy via policy gradient:

∇θµJ = E
[
∇aQθQ (s, a)

∣∣
a=µθµ (s)

∇θµµθµ(s)
]
.

6 Use experience replay (random mini-batches) and target networks
(slow update) to stabilize training.
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Maintaining Stability in DDPG

Experience Replay: store past transitions (st , at , rt , st+1) in a buffer;
sample randomly to break correlation.

Target Networks:

θQ
′ ← τ θQ + (1− τ) θQ

′
,

θµ
′ ← τ θµ + (1− τ) θµ

′
,

ensuring the critic does not overfit to recent data.

Final output: a policy that adjusts portfolio weights dynamically in
response to evolving market conditions.
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Key Takeaways on DDPG

Designed for continuous action spaces =⇒ suitable for portfolio
allocation problems.

Actor-Critic method allows simultaneous learning of:

A policy function (actor).
A value function (critic).

Stabilization via experience replay and target networks is critical in
highly stochastic financial environments.

Allows the agent to learn trading strategies endogenously, without prior
structural knowledge of price formation.
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Investigation Strategy

Training Setup:

50 simulations of 500 episodes each, each episode has 95 time periods.

Each AI agent invests in one risky asset and a risk-free bond.

Set of 10 stocks chosen to have sufficient cross-sectional variation:
N = {IBM, . . . ,ARW}. stock list

State space is It = {me∗n,t , {xn,k,t}K−1
k=1 }, action space is θn ∈ [0, 1].

For each stock n ∈ N we consider:

J ∈ {1, 2, 5} AI traders.
AI traders’ aggregate size: ωJ ∈ {1%, 5%, 10%} of stock’s mkt cap.

Comparisons:

Compare average AI weight θAI =
∑J

j=1 θ
j

J vs. RE benchmark θb.

Compare portfolio returns for average AI vs benchmark

Evaluate market efficiencyME and liquidity L against RE benchmark.
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Portfolio choice (i): θ vs. the sufficient statistic zn (IBM)

Figure: θAI (red line) vs. θb (blue line) against zn
Gufler, Sangiorgi, Tarantino (Deep) Learning to Trade
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Portfolio choice (i): θ vs. the sufficient statistic zn (AXP)

Figure: θAI (red line) vs. θb (blue line) against zn
Gufler, Sangiorgi, Tarantino (Deep) Learning to Trade
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Portfolio choice (i): θ vs. the sufficient statistic zn (KO)

Figure: θAI (red line) vs. θb (blue line) against zn
Gufler, Sangiorgi, Tarantino (Deep) Learning to Trade
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Portfolio choice (i): θ vs. the sufficient statistic zn

Key Points:

For all 10 stocks and all J, ω combinations, θAI increases in zn,t as in
Proposition 1.

A higher zn,t (either because of mean reversion in latent demand or
stock characteristics) signals higher expected capital gains.
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Portfolio choice (ii): linear sufficiency

Average standard deviation of θAIn,t across 100 perturbations of In,t holding zn,t fixed

Jω = 1% Jω = 5% Jω = 10%
std(θAI ) std(θAI ) std(θAI )

J=1 0.414 0.355 0.242
(0.019) (0.042) (0.107)

J=2 0.378 0.398 0.321
(0.041) (0.027) (0.095)

J=5 0.352 0.393 0.404
(0.055) (0.027) (0.022)

Standard deviations across stocks in parentheses.

Portfolio choice is unaffected by such perturbations in RB.
(zn,t is a sufficient statistic for In,t .)
Instead, θAI shows substantial variation across perturbations.

Gufler, Sangiorgi, Tarantino (Deep) Learning to Trade
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Portfolio choice (iii): effects of size and competition

Larger size (ω) leads to more cautious trading.

Greater competition (higher J) leads to more aggressive trading.

These patterns are qualitatively consistent with Proposition 1.

Gufler, Sangiorgi, Tarantino (Deep) Learning to Trade
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Portfolio choice (iii): effects of size and competition
(cont’d)

Regression of average portfolio weight θ

Jω = 1% Jω = 5% Jω = 10%
AI RB AI RB AI RB

J=1
-0.165 -0.238 -0.281 -0.374
(0.019) (0.015) (0.021) (0.016)

J=2
0.059 0.047 -0.106 -0.191 -0.221 -0.326
(0.020) (0.014) (0.039) (0.028) (0.041) (0.029)

J=5
0.208 0.083 0.043 -0.155 -0.072 -0.290
(0.020) (0.014) (0.038) (0.029) (0.040) (0.030)

Effects of size (ω) and competition (J) on average portfolio weight θ for AI and the rational

benchmark (RB). Baseline: J = 1, Jω = 1%. Regressions include stock fixed effects.

AI reduces trading less than RB as size (ω) increases and overreacts to
competition (larger J).

This suggests qualitative alignment but quantitative deviation from RB.
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Average Returns: AI vs. Benchmark

Relative log returns: AI vs. Rational Benchmark, ∆AI ,b = log(RAI )/ log(Rb)− 1

Jω = 1% Jω = 5% Jω = 10%
∆AI ,b ∆AI ,b ∆AI ,b

J=1 -0.113 -0.590 -1.297
(0.102) (0.412) (1.403)

J=2 -0.163 -0.394 -0.581
(0.170) (0.297) (0.403)

J=5 -0.193 -1.763 -4.250
(0.202) (1.333) (1.838)

Values are averages across stocks; standard deviations in parentheses.

J = 1 and low price impact: AI achieves near-rational performance
(5.00% vs 5.65%).

AI returns decline faster than RB as size (ω) and competition (J) rise.

The underperformance is especially pronounced when the number of
agents rises from J = 1 to J = 5.

Gufler, Sangiorgi, Tarantino (Deep) Learning to Trade
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Summary: Portfolio Policies and Performance

Qualitative Match:

AI policies are monotonic in zn,t and respond to ω and J, consistent
with Proposition 1.

Quantitative Gaps:

AI trades too aggressively as J increases and does not scale back
enough as ω grows.

Performance gaps with the rational benchmark widen substantially with
higher J and Jω.

What Drives the Gap?

The environment becomes non-stationary due to other AIs’ exploration.

This negative learning externality—well-known in MARL—disrupts
learning when J is large.
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Negative Learning Externality

Experiment:

Train one AI with J − 1 rational traders.

Compare to training J AIs together.

Compute:
∆RJ−1,J = RAI

(RB co-traders) − RAI
(AI co-traders)

Average portfolio return difference: ∆RJ−1,J (in %)

Jω = 1% Jω = 5% Jω = 10%

J=2
0.926 1.492 1.139
(0.473) (0.616) (0.997)

J=5
1.323 3.738 5.403
(0.391) (0.704) (1.383)

Interpretation:

Joint training creates a non-stationary environment, degrading learning.

AIs learn better when rewards are not distorted by others’ exploration.
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Market EfficiencyME

Average market efficiency (as ∆ % from ME(J = 0)
Panel A: ∆ME(J, Jω)

Jω = 1% Jω = 5% Jω = 10%
AI RB AI RB AI RB

J=1
1.269 1.872 3.402 6.036 3.265 7.134
(0.434) (0.610) (1.510) (2.564) (2.296) (3.418)

J=2
1.163 1.853 4.497 6.665 5.170 8.493
(0.405) (0.614) (1.854) (2.666) (2.469) (3.990)

J=5
1.086 1.835 4.671 6.950 6.525 9.314
(0.400) (0.615) (1.919) (2.691) (3.971) (4.302)

Panel B: ∆MEAI (J, Jω) - ∆MEb(J, Jω)

Jω = 1% Jω = 5% Jω = 10%
J=1 -0.603 -2.634 -3.869
J=2 -0.69 -2.168 -3.323
J=5 -0.749 -2.279 -2.789

Panel A shows deviations from the no-AI baseline; Panel B compares AI to the rational

benchmark. Parentheses report standard deviations across stocks.

AI traders improve market efficiency compared to the no-AI baseline.

Efficiency increases with size (ω) and competition (J), but AI lags the
rational benchmark, especially at high Jω.
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Market Liquidity L

Average Liquidity and Gap vs. Rational Benchmark

Jω = 1% Jω = 5% Jω = 10%
∆AI ,b RB ∆AI ,b RB ∆AI ,b RB

J=1 -64.11 0.029 -81.61 0.088 -96.93 0.097
(39.22) (0.017) (17.58) (0.035) (9.16) (0.034)

J=2 -64.92 0.028 -76.29 0.106 -100.71 0.127
(41.13) (0.017) (22.57) (0.047) (17.48) (0.047)

J=5 -66.87 0.028 -83.59 0.117 -108.80 0.152
(38.69) (0.017) (26.45) (0.057) (20.09) (0.059)

∆AI ,b is the average percentage deviation in liquidity between AI and RB. Liquidity is computed

under a 1% supply shock. Standard deviations across stocks in parentheses.

AI traders provide much less liquidity than rational agents.

RE speculators buy into supply shocks, anticipating reversals.

AIs misread price drops as latent demand shifts, missing arbitrage.

This suggests AIs may underreact to shocks and regime changes.
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Conclusion

AI traders learn return predictability and impact efficiency and liquidity.

Qualitative alignment with theory:

Portfolio comparative statics align with rational benchmark (Prop. 1).
More AI capital reduces predictability.
Liquidity improves but stays below the rational benchmark.

Learning externality:

Multiple AIs distort learning, limiting price impact internalization.
This lowers AI profits and weakens market efficiency and liquidity.

Future work: dynamic rebalancing (additional state variables), multiple
assets (cross sectional predictability).
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Appendix: stock selection

Ticker Company Name Business Sector

IBM International Business Machines Corporation Information Technology Services
AXP American Express Company Credit Services
ABM ABM Industries Incorporated Specialty Business Services
AEE Ameren Corporation Utilities - Regulated Electric
WEYS Weyco Group, Inc. Footwear & Accessories
GIS General Mills, Inc. Packaged Foods
KO The Coca-Cola Company Beverages - Non-Alcoholic
L Loews Corporation Insurance - Property & Casualty
SJM The J. M. Smucker Company Packaged Foods
ARW Arrow Electronics, Inc. Electronics & Computer Distribution

Table: Company Information and Business Sectors

Back to Main
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