Media Narratives and Price Informativeness

Chukwuma Dim Francesco Sangiorgi

Grigory Vilkov

GW University

Frankfurt School

Frankfurt School

September 2023

Motivation

- > Abundant evidence supports media's role in price discovery.
- Few studies explore media's potential harm to financial markets.
- ▶ We study media's attention to narratives, not information content.

Questions Asked...

Link: Exposure to media narratives \rightarrow prices, information, trading

- ▶ Prices and their information content
 - Why are stock returns sensitive to media attention to narratives? Note: we talk about attention, and not about news/ information
 - If stock return co-moves with attention to narratives, is stock price more or less informative about future fundamentals?
 - How is the narrative exposure linked to noise in returns?
 - Is there more trading in exposed stocks?

Insights...

Main Insights

- Stock returns do co-move with media attention to narratives in a time-variant and heterogeneous fashion Narrative Exposure
- High Narrative Exposure translates to high non-systematic volatility

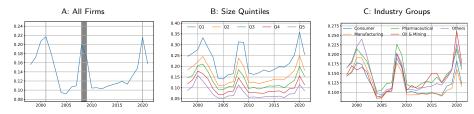
 accounts for over 80% of cross-sectional variation in non-systematic volatility
- Stocks with high Narrative Exposure end up with less informative prices — sharp ↑ in Narr. Exposure → ↓ price informativeness relative to comparable firms
- Narrative Exposure is positively related to trading volume, suggesting the former as a proxy of investor disagreement
- A stylized trading model featuring biased media and some unsophisticated investors rationalizes our findings on the basis of disagreement across investor groups

Quantifying Narrative Attention and Narrative Exposure I

- Use LDA to optimally identify 33 narratives from Wall Street Journal (WSJ) archive with daily articles
 - Compute $\theta_{i,l,\tau}$, attention level to narrative *l* in article *i* on day τ

— Aggregate attention to narrative I on day τ : $\theta_{I,\tau} = \frac{\frac{1}{n}\sum_{i}^{n} \theta_{i,I,\tau}}{D_{\tau}}$

2 Compute narrative *I* beta for year *t* using shocks to attention $\tilde{\theta}_{I,\tau}$:


$$\mathbf{r}_{\mathbf{n},\tau} = \alpha + \beta_{\mathbf{n},\mathbf{t}}^{\top} \mathbf{F}_{\tau} + \beta_{\mathbf{n},\mathbf{t}}^{\mathbf{narr}} \tilde{\theta}_{\mathbf{I},\tau} + \varepsilon_{\mathbf{n},\tau}$$

3 Stock n's weighted-average exposure to narratives is given by

Narrative Exposure_{n,t} =
$$\frac{\sum_{I} |\beta_{n,t,I}^{narr}| \times \sigma_t(\theta_I)}{\sum_{I} \sigma_t(\theta_I)}$$

Quantifying Narrative Attention and Narrative Exposure II

Evolution of average Narrative Exposure_{n,t}

Note:

- Narrative Exposure_{n,t} is fundamentally different from stock-specific news coverage - correlation between them < 0.09

— *Narrative Exposure*_{n,t} reflects the intensity of a stock's co-movement with media attention to different *generic narratives*

Narrative Exposure and Information Channels I

- First, decompose stock return variation as follows:
 - Total return variance → SysVar + IdVar using factor-model-based decomposition (MM, FF3, FF4, FF5)
 - 2 Total return variance → MktVar + PrivateInfo + PublicInfo + Noise using Brogaard, Nguyen, Putnins, and Wu (2022) VAR-based decomposition

	SysVar _{i,t}	ldVar _{i,t}	MktInfo _{i,t}	PrivateInfo _{i,t}	PublicInfo _{i,t}	Noise _{i,t}
SysVar _{i,t}	1.000	0.043	0.551	0.135	0.096	0.002
IdVar _{i,t}	0.043	1.000	0.342	0.783	0.891	0.841
MktInfo _{i,t}	0.551	0.342	1.000	0.363	0.407	0.184
PrivateInfo _{i,t}	0.135	0.783	0.363	1.000	0.722	0.502
PublicInfo _{i,t}	0.096	0.891	0.407	0.722	1.000	0.643
Noise _{i,t}	0.002	0.841	0.184	0.502	0.643	1.000

Use two-stage regression, CRS & TS, to relate each component and Narrative Exposure_{n,t} conditioning on other characteristics

Narrative Exposure and Information Channels II

	Var _{n,t}	SysVar _{n,t}	ldVar _{n,t}	MktInfo _{n,t}	PrivateInfo _{n,t}	$PublicInfo_{n,t}$	$Noise_{n,t}$
Panel A: Full Specifica	tion.						
Narrative Exposure _{n,t}	0.776	-0.042	0.795	0.208	0.632	0.629	0.646
,	(0.001)	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
R ² (%)	87.75	77.96	87.96	48.81	64.19	74.78	66.05
Obs.	2,413	2,413	2,413	2,413	2,413	2,413	2,413
Factor betas	FF4	FF4	FF4	FF4	FF4	FF4	FF4
Fundamentals	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Stock controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sector FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Panel B: Reduced Spec	cification.						
Narrative Exposure _{n.t}	0.923	0.052	0.928	0.359	0.764	0.845	0.777
. ,.	(0.001)	(0.208)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
R^2 (%)	85.17	2.28	86.09	13.97	58.51	71.37	60.49
Obs.	2,413	2,413	2,413	2,413	2,413	2,413	2,413
Controls/ FE	No	No	No	No	No	No	No

▶ $1 \times SD$ change in *Narrative Exposure*_{n,t} \rightarrow 0.8 \times *SD* change in *IdVar*!

- Narr. Exposure alone explains 86% variability in IdVar: mainly through PublicInfo
- ▶ Narr. Exposure proxies the main source of non-systematic variance

Information Channels and Price Informativeness I

Use an approach similar to Bai, Philippon, and Savov (2016):

Regress future fundamentals (EBIT/A) on current market value (M/A)

$$\frac{E_{n,t+h}}{A_{n,t}} = a + b_{0,h} \frac{E_{n,t}}{A_{n,t}} + \left[\frac{b_{1,h}}{b_{1,h}} + b_{proxy,h}^{\top} proxy_{n,t} \right] \times \ln \frac{M_{n,t}}{A_{n,t}} + b_x^{\top} X_{n,t} + \varepsilon_{n,t+h}$$

• Two-stage regression:
$$CRS \rightarrow TS$$

- $b_{1,h}$ gives price informativeness for horizon h = 1 or 3 years
- Interact information proxy $proxy_{n,t}$ with market value
- *b*_{proxy,h} is the effect of information proxy intensity on price informativeness
- Control for 1-digit SIC, factor betas, multiple fundamentals: Debt/Assets, Cash/Assets, Ppent/Assets, Capex/Assets, Sales/Assets, R&D/Assets

Information Channels and Price Informativeness II

- ▶ *IdVar* reduces price informativeness by \approx 60% of the base effect
- ▶ PublicInfo reduces price informativeness by \approx 45% of the base effect

		One-yea	r horizon			Three-year horizon				
	MM	FF4	FF5	BNPW	MM	FF4	FF5	BNPW		
$\ln(M/A)_{n,t}$	0.019	0.019	0.020	0.021	0.035	0.038	0.038	0.040		
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)		
$\ln(M/A)_{n,t} \times SysVar_{n,t}$	-0.000	-0.001	-0.002	-	0.000	-0.000	-0.000	-		
	(0.521)	(0.070)	(0.028)		(0.992)	(0.977)	(0.892)			
$\ln(M/A)_{n,t} \times IdVar_{n,t}$	-0.014	-0.014	-0.014	-	-0.020	-0.024	-0.024	-		
	(0.001)	(0.001)	(0.001)		(0.001)	(0.001)	(0.001)			
$\ln(M/A)_{n,t} \times MktInfo_{n,t}$	-	-	-	-0.003	-	-	-	0.001		
				(0.001)				(0.797)		
$\ln(M/A)_{n,t} \times PrivateInfo_{n,t}$	-	-	-	-0.003	-	-	-	800.0		
				(0.001)				(0.556)		
$\ln(M/A)_{n,t} \times PublicInfo_{n,t}$	-	-	-	-0.009	-	-	-	-0.014		
				(0.001)				(0.001)		
$\ln(M/A)_{n,t} \times Noise_{n,t}$	-	-	-	-0.003	-	-	-	-0.007		
				(0.001)				(0.076)		
R^{2} (%)	79.68	79.69	79.69	80.41	60.75	60.86	60.86	62.56		
Obs.	3,151	3,151	3,151	2,223	2,470	2,470	2,470	1,736		
Factor betas	FF4	FF4	FF4	FF4	FF4	FF4	FF4	FF4		
Fundamentals	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Stock controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Sector FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		

Narrative Exposure and Price Informativeness I

- Use an approach similar to Bai, Philippon, and Savov (2016):
 - Regress future fundamentals (EBIT/A) on current market value (M/A)

$$\frac{E_{n,t+h}}{A_{n,t}} = \mathbf{a} + b_{0,h} \frac{E_{n,t}}{A_{n,t}} + \ln \frac{M_{n,t}}{A_{n,t}} \cdot [\mathbf{b}_{1,h} + \mathbf{b}_{2,h} \mathsf{Nar} \ \mathsf{Exposure}_{n,t}] + \mathbf{b}_{x,h}^\top X_{n,t} + \varepsilon_{n,t+h}$$

- Two-stage regression: $CRS \rightarrow TS$
- **b**_{1,h} gives price informativeness for horizon h = 1 or 3 years
- **b_{2,h}** captures how narrative exposure relates to price informativeness
- Controls for 1-digit SIC, factor betas, multiple fundamentals: Debt/Assets, Cash/Assets, Ppent/Assets, Capex/Assets, Sales/Assets, R&D/Assets

Narrative Exposure and Price Informativeness II

	One-year horizon					Three-year horizon				
	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)	
$\ln(M/A)_{n,t}$	0.022	0.032	0.032	0.032	(0.046	0.059	0.058	0.060	
	(0.001)	(0.001)	(0.001)	(0.001)	(0	.001)	(0.001)	(0.001)	(0.001)	
$\ln(M/A)_{n,t} \times Narr Exposure_{n,t}$	-0.016	-0.015	-0.015	-0.009	-(0.028	-0.025	-0.024	-0.016	
	(0.001)	(0.001)	(0.001)	(0.001)	(0	.001)	(0.001)	(0.001)	(0.001)	
R^{2} (%)	77.94	79.40	79.46	77.54	5	7.04	60.31	60.50	55.28	
Obs.	3,151	3,151	3,151	946	2	,470	2,470	2,470	859	
Factor betas	-	FF4	FF4	FF4		-	FF4	FF4	FF4	
Fundamentals	-	Yes	Yes	Yes		-	Yes	Yes	Yes	
Sector FE	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	
High Average Exposure	-0.006	-0.006	-0.006	-0.003	-(0.011	-0.004	-0.003	-0.001	
	(0.013)	(0.015)	(0.014)	(0.038)	(0	.306)	(0.443)	(0.472)	(0.853)	

Stock prices are informative on average

- But high narrative exposure significantly decreases price informativeness
- > Periods of elevated average exposure incrementally decreases price informativeness

Narrative Exposure and Price Informativeness III

• Get closer to causality:

— Narrative Exposure_{n,t} is reasonably persistent across adjacent years: 66% (61%) probability of remaining in bottom (top) quintile

	New	1	2	3	4	5
Old						
1		0.662	0.241	0.069	0.020	0.008
2		0.248	0.383	0.238	0.100	0.031
3		0.072	0.253	0.348	0.237	0.090
4		0.015	0.103	0.257	0.367	0.258
5		0.003	0.020	0.089	0.275	0.613

— Use sizable increase (25 pp.) in *Narrative Exposure*_{n,t} percentile rank as an indicator of treatment

— Identify comparable firms using propensity score matching (based on the following characteristics observed one year before treatment: *Narrative Exposure*, ln(*Market Cap.*), ln(*Market Cap.*/*Assets*), ln(*BTM*), *EBIT*/*Asset*, *Capex*/*Assets*, *R&D*/*Assets*, *Market Beta*, and *Illiquidity*)

Narrative Exposure and Price Informativeness IV

- estimate panel regression:

$$\frac{E_{n,t+h}}{A_{n,t}} = \mathbf{a} + b_{0,h} \frac{E_{n,t}}{A_{n,t}} + \ln \frac{M_{n,t}}{A_{n,t}} \cdot [b_{1,h} + b_{2,h} \operatorname{Treated}_{n,t}] + b_{x,h}^{\top} X_{n,t} + \dots$$

- **Treated firms**: \geq 25 pp. change in Narrative Exposure percentile rank from *t* to t + 1
- Control firms: Up to 5 firms matched on observables
- \blacksquare X_{n,t} includes controls to account for residual differences in characteristics

Narrative Exposure and Price Informativeness V

	One-year horizon					Three-year horizon				
	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)	
$\ln(M/A)_{n,t}$	0.0112	0.0109	0.0109	0.0110		0.0192	0.0220	0.0222	0.0222	
	(0.000)	(0.000)	(0.000)	(0.000)		(0.000)	(0.000)	(0.000)	(0.000)	
$\ln(M/A)_{n,t} \times Treated$	-0.0045	-0.0048	-0.0046	-0.0046		-0.0103	-0.0097	-0.0095	-0.0094	
	(0.046)	(0.022)	(0.032)	(0.035)		(0.000)	(0.000)	(0.000)	(0.000)	
R^2 (%)	70.79	71.22	71.37	71.96		45.46	46.92	47.15	48.58	
Obs.	34,350	34,350	34,350	34,350		25,722	25,722	25,722	25,722	
Controls	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	
Sector FE	Yes	No	Yes	No		Yes	No	Yes	No	
Year FE	No	Yes	Yes	No		No	Yes	Yes	No	
Sector \times Year FE	No	No	No	Yes		No	No	No	Yes	

Price informativeness is significantly lower for firms with sizable increase in narr. exposure relative to their matched comparable firms

Narrative Exposure and Trading Activity

			Turnover _n	t	
	(1)	(2)	(3)	(4)	(5)
Narr Exposure _{n,t}	0.201	0.198	0.376	0.334	0.410
	(0.010)	(0.006)	(0.001)	(0.001)	(0.001)
Illiquidity _{n,t}	-	-	-	-0.202	-1.001
				(0.001)	(0.001)
$MAX_{n,t}$	-	-	-	0.108	0.354
				(0.001)	(0.001)
$DOB_{n,t}$	-	-	-	-	0.048
					(0.001)
Inst. Ownership _{n,t} , %	-	-	-	-	0.489
					(0.001)
R^{2} (%)	11.10	30.32	39.31	42.24	48.28
Obs.	3,412	3,412	3,412	3,412	980
Fundamentals	No	No	Yes	Yes	Yes
Factor Betas	No	Yes	Yes	Yes	Yes
Sector FE	Yes	Yes	Yes	Yes	Yes

\blacktriangleright Finding: higher narrative exposure \rightarrow higher turnover

Model Sketch I

A simple infinite-horizon economy

 \blacktriangleright ∞ periods, $\mathit{N}+1$ assets, continuum of investors of two types

A riskfree asset (\bar{r}) and N risky assets paying regular dividends

$$D_{n,t} = \bar{D}_n + \beta'_n f_t + \varphi_{n,t},$$

driven by $K \times 1$ vector of common factors f_t

Model Sketch II

Media provides valuable but biased information

At t, a media outlet publishes M articles with narratives z_t ($L \times 1$):

$$z_t = A f_t + \eta_t, \ \eta_t \sim N(0, \Sigma_\eta),$$

An article delivers narrative *I* with probability $\theta_{I,t}$ Note: $\theta_{I,t}$ closely maps attention extracted from news texts

▶ An article *m* gives a signal with a narrative-specific bias $\pi_{I,t}$

$$s_{m,t} = z_{l,t+1} + \pi_{l,t} + \zeta_{m,t} \ \pi_{l,t} \sim N(\pi_l, \pi_l^2 \sigma^2)$$

▶ With $M \rightarrow \infty$, investors' information is equivalent to L signals

$$\mathcal{S}_{l,t} = z_{l,t+1} + \pi_{l,t} + \hat{\zeta}_{l,t}, \ \ \hat{\zeta}_{l,t} \sim \mathcal{N}\left(0, (\omega \theta_{l,t})^{-1}\right)$$

▶ Relative attention $\theta_{I,t}$ to narrative I increases precision of $S_{I,t}$

Model Sketch III

Investors: rational and unsophisticated

- Continuum of risk-neutral investors
- Born every period, trade, next period consume and exit...
- Rational investors know about the bias; Unsophisticated ignore it
- Thus, expected payoff of both types of investors are

Rational
$$E_{R,t} (D_{n,t+1}) = \beta'_n \Phi_t (S_t - \pi_t)$$

Unsophisticated $E_{U,t} (D_{n,t+1}) = E_{R,t} (D_{n,t+1}) + \beta'_n \Phi_t \pi_t$
 $= E_{R,t} (D_{n,t+1}) + \Pi_{n,t}$

- Φ_t depends on attention level θ_t via precision matrix Θ_t
- **I** $\Pi_{n,t}$ gives the total effect of bias on **U**'s dividend expectation

Model Sketch IV

Asset prices and returns

Asset returns are affected by both bias and narrative attention

$$r_{n,t} = \ldots + \gamma_n (\prod_{n,t} - \prod_{n,t-1})$$

with the **red** part being the bias-driven return = $f(\pi, \theta)$.

Asset's exposure to narrative attention

$$\beta(n, l) := \frac{Cov(r_{n,t}, \theta_{l,t})}{Var(\theta_{l,t})}$$

▶ Bias-driven component \rightarrow absolute exposure $|\beta(n, l)|$ increases with

- Mass of U investors invested in *n*, i.e., γ_n
- Bias magnitude π
- If bias is zero, narrative exposure is also zero!

Model Sketch V

Narrative exposures, price informativeness, and trading volume

Price Informativeness

$$I_{n} = \frac{Cov (D_{n,t+1}, P_{n,t})^{2}}{Var (P_{n,t})} = \frac{Var [E_{R,t} (D_{n,t+1})]^{2}}{Var [E_{R,t} (D_{n,t+1})] + \gamma_{n}^{2} Var (\Pi_{n,t})}$$

• $\gamma_n^2 Var(\Pi_{n,t}) \propto IdVar_n = idiosyncratic return variance$

► Narrative Exposure is a proxy for $\gamma_n^2 Var(\Pi_{n,t})$

$$\beta(n,l)^{2} = \gamma_{n}^{2} \operatorname{Var}(\Pi_{n,t}) \frac{\operatorname{Corr}(\Pi_{n,t},\theta_{l,t})^{2}}{\operatorname{Var}(\theta_{l,t})}$$

Trading Volume

$$TV_{n,t} = \gamma_n(1-\gamma_n) | \left[\prod_{n,t} - E(\prod_{n,t}) \right] |$$

ALL: $f(\text{bias } \pi_{n,t}, \text{ mass of unsophisticated investors } \gamma_n, \text{ media attention } \theta_{l,t})$

Testable Predictions

A number of (cross-sectional) testable predictions

- 1 Narrative exposure reduces price informativeness
- 2 Higher media attention to a narrative reduces exposed stocks' price informativeness
- 3 Narrative exposure is positively related to non-systematic variance
 Non-systematic variance in turn reduces price informativeness
- Observation of the second states of the second s

Bottom Line

Media narrative exposure proxies non-informative trading and investor disagreement that creates excess volatility and distorts the information content of stock prices

References I

- Bai, J., T. Philippon, and A. Savov, 2016, "Have financial markets become more informative?," Journal of Financial Economics, 122(3), 625 – 654.
- Brogaard, J., T. H. Nguyen, T. J. Putnins, and E. Wu, 2022, "What Moves Stock Prices? The Roles of News, Noise, and Information," *The Review of Financial Studies*, 35(9), 4341–4386.